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Creep data have been obtained for polypropylene at 23°C over an extensive time range (10-s-106 s) as a 
function of the elapsed time t, between quenching from 80°C and the start of the creep experiment. The creep 
curves have been fitted with empirical functions capable of describing the behaviour across the entire/~- and 
u,relaxation regions. Analyses of results from both short-term (t ~<0.1 re) and long-term tests suggest that 
physical ageing produces a decrease in relaxed compliance for the/~-(glass-mbber) relaxation together with 
an increase in average retardation time and broadening of the u-process. Some decrease in magnitude of the ~- 
relaxation also seems to be significant. It is proposed that ageing in polypropylene at room temperature could 
involve decreases in contour length of amorphous tie-molecules (yielding more extended conformations) 
through coupled motions in the crystalline and amorphous regions associated with the u-mechanism. 
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INTRODUCTION 

Various empirical relationships have been proposed for 
describing the low-strain creep behaviour of polymers 
and these include a relatively versatile equation discussed 
by Struik 1'2 which takes the form 

D(t) = D O exp[(t/to) ~] (1) 

Here D(t) is the tensile creep compliance, to is related to 
some mean relaxation time and Do and 7 are constants. 
Equation (1) with ~ 1/3 describes creep in glassy 
amorphous polymers at the short time end of the glass- 
rubber (~) relaxation 1. It is then valid only for times t 
which are short compared with the physical age of the 
polymer as determined by the elapsed time te between a 
rapid cool from temperatures above the glass transition 
temperature Tg and the start of the creep test. This 
restriction arises from a marked increase in relaxation 
times, and hence to, for the glass-rubber relaxation with 
increasing age state. From a series of short-term tests 
(t~<0.2to) at different elapsed times the relationship 
between to and tc may be established 1. It is then possible 1 
to predict the creep behaviour in long-term experiments 
(t>>0.2to) when further ageing during the tests is 
progressively increasing to. 

Since equation (1) predicts that the slopes of plots of 
D(t) or log D(t) against log t must increase indefinitely, it 
can only hold for times considerably shorter than the 
times at which inflexion points are observed in such plots 
from short-term tests. It is also applicable only when a 
single relaxation mechanism is responsible for the creep 
data. For the amorphous polymer PMMA, the longer 
time region of the secondary (fl) relaxation process 
overlaps the initial stages of the glass-rubber (~) 
mechanism and short-term creep results at room 
temperature could not be described directly using 
equation (1). In this case 3,4 a range of dynamic 
mechanical experiments were used to obtain creep data at 

times spanned by the fl-relaxation (10-s-10s). These 
results demonstrated that, unlike the ~-mechanism, the 
creep response in the/3 region is independent of age state 
and may be successfully described by a function derived 
from the Cole-Cole equation 4. The contribution to the 
creep compliance from the fl-mechanism in the overlap 
region could then be predicted and the residual ~- 
contribution could be described by equation (1). A 
subsequent prediction of the long-term creep behaviour 
using Struik's method compared reasonably well with 
experimental data 4. 

Most partially crystalline polymers also exhibit 
overlapping relaxation regions which contribute to the 
creep response. The fl-relaxation is usually ascribed to 
molecular motions in the bulk amorphous phase 
associated with the glass transition 5. The ~t-process has 
been attributed to rearrangements of disordered segments 
close to the crystal surfaces which couple with motions 
within the crystals 6. Struik has similarly suggested 7,a that 
the ~ process involves motions of restrained amorphous 
segments in the vicinity of the crystals which give rise to 
an additional (upper) glass transition at a temperature Tg u 
above Tg. On the basis of this model he has interpreted 
ageing effects over wide temperature ranges in terms of 
increases in retardation times for both the/3 and the ~t 
processes, corresponding to horizontal shifts of the 
component creep curves along the log time axis. 
However, ageing in semicrystalline polymers could give 
rise to changes in relaxation magnitude a,9 rather than 
retardation times and such effects may, or may not, 
involve secondary crystallization. 

In this paper, analyses are presented of creep data 
obtained for partially crystalline polypropylene after 
ageing for various times at room temperature. A 
combination of static and dynamic techniques was again 
employed to obtain results over a wide time range (10- s _  
10 6 s), which covered most of the/~-relaxation and the 
early part of the ~-relaxation. Short-term creep data are 
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first analysed using functions which, unlike equation (1), 
may describe the behaviour across the entire fl- and ~t- 
regions. The results of these analyses are then used in 
predicting the creep behaviour in long-term tests and the 
predictions are compared with long-term data obtained 
for the polymer at room temperature. 

EXPERIMENTAL 

Material 
The polypropylene was obtained in the form of 12 mm 

thick sheets which were compression moulded by the 
supplier from granules of ICI Propathene GSE 16 
homopolymer. Specimens machined from these sheets 
were annealed by heating to 130°C for 4 h followed by 
cooling to 23°C at 0.2°Cmin -~ to stabilize the 
crystallinity with respect to subsequent thermal 
treatments. The density of the annealed samples, 
determined by hydrostatic weighing in distilled water at 
23°C, was 912kgm -3. The degree of crystallinity 
calculated from this density 1° was 71 ?/o. 

Typical dimensions of the specimens used for creep 
measurements (10 x 10 x 160 mm) were larger than the 
dimensions of samples employed for the dynamic 
measurements (10x 3x 100mm). However, creep tests 
conducted on a number of specimens of different cross- 
sectional area revealed no evidence of any structural 
heterogeneity through the specimen thickness. 

Before the creep and dynamic mechanical measure- 
ments, the annealed specimens were heated to 80°C for 
30 min, quenched in water at room temperature and then 
stored (aged) in air at 23°C for various periods of elapsed 
time te. The elapsed times ranged from 2.5 to 1200 h and 
the duration of each short-time creep test did not exceed 
0.2 te. The reproducibility of the material ageing effects 
was investigated by repeating the thermal treatment at 
80°C and the quenching and storage of several samples 
after completion of the creep measurements. Subsequent 
compliance values obtained for these samples agreed 
within experimental error (< 3 ~) with the original data 
for corresponding te values. 

Measurement of creep compliance for times above I s 
The apparatus used to obtain creep data at 23°C for 

t~> I s has been described previously ~ and only a brief 
summary is given here. The specimen was located 
between two damps. The lower clamp remained fixed and 
the upper clamp was constrained by a linear bearing such 
that the only permissible movement was along the long 
axis of the sample. Dead-weight loads (typically 60 N) 
were applied to the sample through the upper clamp via a 
pivoted arm having a 5:1 advantage. The extension of a 
sample under load was monitored by a pair of 50 mm 
gauge length extensometers located on opposite sides of 
the sample. Contact between each extensometer and the 
sample was via two knife edges, one attached to the body 
of an inductive transducer and the other to its core. 
Contact was maintained by a light pressure applied 
through the knife edges via a pair of spring steel clips. 

The voltage outputs from the amplifier detecting 
each extensometer signal were sampled by a BBC 
microcomputer at selected time intervals ranging from 
36 s to 10 h and stored on a magnetic disc. A transient 
recorder was used to make short time creep 

measurements at intervals of 0.1 s for the first 400 s after 
application of the load. 

Compliance values obtained by this method for 
different samples of the same age generally agreed within 
3 ~.  The data presented in this paper are averages of D(t) 
values obtained on four samples at each elapsed time. 

Determination of creep compliance for times between 10-s 
and 10 s 

Values of creep compliance at short times covering the 
fl-rdaxation and initial part of the c<-rdaxation region for 
polypropylene were derived from measurements of the 
dynamic storage modulus E' and the loss modulus E" 
over the frequency range 0.03 Hz-5 x 106 Hz at 23°C. The 
techniques employed have been discussed in previous 
publications 12"13 and comprised a tensile non-resonance 
method (0.03-100Hz), an audiofrequency flexural 
resonance method (100Hz-SkHz) and an ultrasonic 
wave propagation technique (0.5-5 MHz). The storage 
moduli obtained by these methods are considered to be 
accurate to within 1~o. 

To obtain D(t) values from the dynamic measurements 
it is convenient to specify the dynamic data in terms of the 
storage compliance D'(co) and loss compliance D"(co) as a 
function of angular frequency 09. These quantities are the 
components of the complex tensile compliance 
D*(co)=D'(co)-iD"(co), where i = ( - 1 )  1/2, and may be 
obtained using D*(co)= 1/E*(co) from the components of 
the complex modulus E*(co)=E'(co)+iE"(co). Since 
values of the loss factor tan 6=D"/D' were <0.15 at all 
frequencies studied for polypropylene, it follows that D(t) 
values may be derived with an error less than 1.5 ~ using 
the approximation ~4 

D(t) = D'(1/t) + 0.337 D"(O.323/t) (2) 

where, as indicated, D' and D" are evaluated at angular 
frequencies 1/t and 0.323/t, respectively. The simpler 
approximation 

D(t) = D'(x/t) (3) 

with the constant x having a value of 0.63, was found to 
yield D(t) values within 1~ of those derived using 
equation (2) and was therefore employed in most data 
transformations. 

ANALYSIS OF SHORT-TERM CREEP DATA IN 
THE fl-RELAXATION REGION 

Figure I shows creep curves covering up to 13 decades on 
the time scale for samples of different age and illustrates 
the good agreement between data obtained by the various 
methods. At times < 10- 7 s the compliances derived from 
the ultrasonic data appear to lie on a short-time plateau 
whose level is essentially independent of to. With 
increasing time each creep curve exhibits a point of 
inflexion, corresponding to a mean retardation time for 
the fl-mechanism around 10- 5 s, a subsequent decrease in 
slope and a final increase in slope at times > 10- 2 s. These 
results illustrate the dominance of the glass-rubber/7- 
relaxation on the short-time compliance at room 
temperature and the onset of the overlapping a-process at 
longer times. At any given time, D(t) decreases with 
increasing to. 
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Figure 1 Creep curves for polypropylene at different states of physical 
ageing characterized by the elapsed time te after quenching from 80°C. 
A, te = 2.5 h; B, te = 24 h; C, te = 216 h. The techniques used to obtain the 
data were: (D, ultrasonic wave propagation; O, audio frequency flexural 
resonance; C), tensile non-resonance;/% tensile creep. ~ and//indicate 
the timescales over which the ~ and//mechanisms are active 
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According to equations (5)-(7) a plot of D(t) against log t 
in the//-region is symmetrical about an inflexion point at 
time g%. In fitting these equations to the short time data 
in Fioure 2 the zc value was obtained from experimental 
D " - lo g co  curves using com~x%= 1, where com.~ is the 
frequency of maximum D" for the //-relaxation. This 
procedure follows from equation (4) and with x=0.63 
yields x%= 3.15 x 10-5 s. From the plots of D" against 
log co for samples of different age state (Fioure 3) it would 
appear that coma~, and hence Zc, for the/3 process does not 
change significantly with t~. However, the magnitude of 
the D" //-peak decreases substantially with increasing 
elapsed time. 

Using the derived xz~ value, an optimization routine 
was employed to select values of Duty, DR~ and n such that 
the predicted creep curves (5) best fitted the experimental 
data over the time range 10-s -10-3  s. Beyond this range 
the onset of the a-process yields an additional 
contribution to the measured compliance. The values of n 
and Duo were virtually constant at 0.30 and 
2.0x 10-1°pa  -~, respectively, and, as illustrated in 

In analysing the creep behaviour in the//-relaxation 
region, it should first be recalled that equation (i) can 
only be valid at times short compared with the time 
corresponding to the point of inflexion. It could not 
therefore be used to describe the data over the entire//- 
region or to predict the//-compliance contribution in the 
region of overlap with the g-process. 

In the//-region, the shapes of the D(t ) - log  t plots and 
corresponding D' - l o g  co and D" - l o g  co curves are quite 
symmetrical. This observation is consistent with the fact 
that symmetrical Cole--Cole functions have been 
successfully used by Boyd is to fit dynamic mechanical 
data covering the g, /3 and 7 regions of several 
semicrystalline polymers, including polypropylene. 
According to the Cole-Cole equation, the complex 
compliance for the//-relaxation is given by 

ADp ( 4 )  
D*(co) = Du# -t 1 + (ico%)" 

where: AD~ = DR~ --Dup, Dup and DRp being the unrelaxed 
and relaxed compliances for the//-process at limiting high 
and low frequencies, respectively; zc is an average 
retardation time for the fl process; and n a parameter 
(0 < n ~< 1) characterizing the breadth of the//-retardation 
time spectrum. To obtain a corresponding relationship 
for D(t) we now separate the real and imaginary 
components of equation (4) and transform to variable 
time using the approximation (3). This yields 

D(t)=Du~ + D~(t) (5) 

where Dp(t) is the contribution to D(t) from the fl-process 
and may be written 

D~(t) = ADp~/~(t) (6) 

where the normalized creep function Sop(t) is given by 

(tlx~o)" [(tl.~o)" + cosInrc/2)] 
d/ca(t) = 1 + 2(tlxrc)"cos(nn/2) + (tlrzc) z" (7) 
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Figure 2 Modelling creep compliance through the fl relaxation for 
samples of different age state using equations (5)-(7). te (h): O, 2.5; A, 
24;ll,216;g%=3.15x 10-Ss, n=0.30,Du/~=2.0 x 10-1°Pa-l,AD/~is 
given by equation (8) 
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Figme 4 Log t-relaxation magnitude against log elapsed time, 
yielding B= 5.94 x 10 -1° Pa -1 s k and k=O.040 in equation (8) 

Figure 2, ageing effects in the//-region may be described 
almost entirely by a decrease in DR#, and hence AD#, with 
increasing te. A plot of log ADp against log to was linear 
(Figure 4) and yielded the relationship 

AD# = Bt~-k (8) 

for the elapsed time dependence of the //-relaxation 
magnitude. Values for the constants B and k were 
5.94 x 10-lo Pa-1 s k and 0.040, respectively. 

ANALYSIS OF SHORT-TERM CREEP IN THE 
a-RELAXATION REGION 

At longer times when both the a and //-mechanisms 
contribute to the creep it is assumed that the total 
compliance may be written as 

D(t) = Do# + D#(t) + D.(t) (9) 

where D~(t) is the contribution to D(t) from the a-process. 
In the region of time spanned by the a-relaxation the 
contribution Do# + D#(t) may be predicted with the aid of 
equations (5)-(7) and D~(t) thus obtained using equation 
(9) from the measured D(t). Values of D~(t) deduced in this 
way at various elapsed times are shown in Figure 5. The 
accuracy of these data is limited by the confidence with 
which the//-creep contribution can be extrapolated from 
short-time results. At the shorter times in Figure 5 the 
D=(t) values are very small and clearly prone to some 
error. However, the asymptotic approach of D=(t) values 
to zero at short times provides some support for the 
validity of equations (5)-(7) in modelling the //-creep 
contribution. 

From observations of the data in Figure 5, it is not 
possible to conclude whether the room temperature 
ageing in polypropylene is influencing the a-retardation 
times, as for the glass-rubber relaxation in amorphous 
polymers ~-+, or the a-relaxation magnitude, as observed 
for the//-mechanism in polypropylene. An attempt to fit 
the D=(t) data using equation (1) was not very successful, a 
result ascribed partly to the fact that the longer creep 
times may not be substantially less than the inflexion time 
for the a-process. Furthermore, this equation does not 
permit variations in creep behaviour with age state to be 

partly described in terms of changes in relaxation 
magnitude. 

Changes in either the relaxation magnitude or the 
relaxation time with ageing can be accounted for by an 
equation of the Cole--Cole form (equation (6)) and such a 
function is also consistent with the symmetrical forms of 
resolved a-relaxations of partially crystalline polymers as 
revealed by dynamic mechanical studies as. Before the 
application of the Cole--Cole equation, however, it is 
instructive to consider a relatively simple function of the 
Williams-Watts form ~6 which, although yielding a non- 
symmetrical D=(t) versus log t plot, can provide an 
accurate description of the D=(t) data over the timescales 
so far investigated and can also account for changes in 
both relaxation magnitude and relaxation time with age 
state. 

Application of a Williams-Watts function 
In this treatment the contribution to D(t) from the a- 

process is written 

O=(t) = AD,{ 1 - exp [ - (t/Zw)'] } = AD=Ow,(t) (10) 

where AD= = D~ - Du=, DR= and Du= being the relaxed and 
unrelaxed compliances, Zw is related to some mean 
retardation time for the a-process and m is a parameter 
(0 < m ~< 1) characterizing the breadth of the retardation- 
time distribution. Note that equation (10) is consistent 
with a creep recovery function of the form exp[ -  (tlzw)"] 
and hence with the analogous function proposed by 
Williams and Watts to describe the charge decay 
associated with the primary relaxation in amorphous 
polymer dielectrics. The exponential term may be 
expanded as a power series to give 

o+,t)_r,:r, ,r+: ] 
A D : - \ ~ w /  k - 2 \ ~ ]  + " "  (11) 

so that when (t/Zw) m ~ 1 it follows that 

log D~(t) = log AD~ + m log t - m log Zw (12) 
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Figure 5 Short-tcnn creep data for the ~,-relaxation mechanism at 
diffepmt elapsed times t c (h): O,  2.5; r], 8; A,  24; 0 ,  72; BI, 216; A,  
1200. The solid lines are given by equation (15) with P f 2 1 . 4 x  
10-1°Pa -1, Q f 4 4 4 x 1 0 - 1 ° P a - l s  ", r=0.211, z w f 3 x l 0 S s  and 
m=0.255 
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Figure 6 Log c-creep compliance against log time at different elapsed 
times te. The straight lines correspond to a constant value for the 
distribution parameter m=0.255. Symbols are explained in Figure 5 

and a plot of log D=(t) against log t will be linear with 
slope m. 

The experimental data in Figure 5 are shown as double 
logarithmic plots in Figure 6. For t < 10 ~ s the variation of 
log D~(t) with log t is linear within experimental error. 
There is a clear indication that the gradient in this time 
range decreases slightly with elapsed time, suggesting a 
small decrease in m over the t, range studied. However, in 
an attempt to simplify the data analysis, the consequences 
are first investigated of assuming that m takes a constant 
average value. Data analyses will subsequently be 
presented where the small variations in m are considered. 

Case 1: m constant. The straight line fits shown in 
Figure 6 correspond to a gradient m = 0.255, representing 
an average value for the gradients of the lines best fitting 
the data (Figure 7). It is apparent that with increasing t 
the data exhibit negative deviations from the lines in 
Figure 6 at a time which is essentially independent of age 
state. From equation (11), this observation suggests that 
Zw is independent of elapsed time and therefore implies 
that the influence of physical ageing on creep behaviour in 
the =-region involves predominantly changes in the 
relaxation magnitude AD~. If the data deviate by 2 % from 
the straight lines at a time t~ then equation (11) yields 

T w = tc/O.04 TM (13) 

and taking t¢ ~ 103 s we obtain Zw ,~ 3 x l0 s s. Values for 
AD= corresponding to each elapsed time curve were then 
deduced using equation (12) from the intercepts at 
log t = 0. An empirical relationship of the form 

AD==P+Qt~" (14) 

was found to describe the elapsed time dependence of 
AD=.  Values for P = 21.4 x 10- ~ o P a -  1 ,  

Q = ' H  A, x 10-1°Pa  -~ s' and r=0.211 were obtained 
using an optimization routine. 

Equations (14) and (10) now yield 

D=(t) = (e  + Q t~-') { 1 - exp [ - (t/Tw)'] } (15) 

for the contribution from the =-mechanism to short-term 
creep in polypropylene. Using the derived values for the 
parameters, predicted curves of D=(t) against log t from 
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equation (15) are compared with experimental data in 
Figure 5. The agreement is within experimental error. 

Case 2: m variable. Figure 7 shows the same data as 
Figure 6 but the gradients of the linear fits at short times 
are no longer taken to be constant but to decrease as 
indicated with increasing t~. This trend corresponds to a 
decrease in m with elapsed time which can be described 
quite accurately by the relationship 

m=mot J (16) 

with mo=0.358 and X=0.027 and implies a slight 
broadening of the distribution of retardation times for the 
~-mechanism with increasing age. 

It is also apparent from Figure 7 that the decrease in m 
is accompanied by an increase in the time at which the 
departure from linearity occurs. According to equation 
(11) these combined trends are consistent with the 
assumption that Tw increases with elapsed time. The 
deviations from linearity in Figure 7 are not sufficiently 
well def'med to obtain an accurate value of tc and hence z,, 
at each elapsed time. However, assuming that AD= is 
constant, the variation o fz ,  with to was derived as follows. 
At an arbitrary elapsed time of 72 h, a 2 % deviation from 
linearity was found to occur at tc~ 103 s. From the 
gradient m=0.258 of the 72 h plot, an approximate z ,  
value of 2.6 x l0 s s was then obtained using (13) and an 
estimate of AD~=53x 10-1°Pa  -1 was subsequently 
determined from the intercept at log t = 0  (equation (12)). 
Assuming that this AD= value is independent of t=, the ~w 
values at other elapsed times were then deduced from the 
relevant intercepts and slopes, again using equation (12). 
A plot of log ~w against log t= is linear, as shown in Figure 
8, implying an ageing relationship for Tw of the form 

Zw = At: (17) 

with A =  1.66 x 104 s I -"  and #=0.77.  
The appropriate equation for modelling the short-term 

creep contribution from the ~-mechanism now becomes 
(compare equation (15)), 

D~(t) = AD={ 1 - exp[ - (t/At~) ~°te-x] } (18) 
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Figure 7 As for Figure 6 except that the gradient m is now allowed to 
vary with elapsed time. Values for te (h) and optimum values for m are, 
respectively, O, 2.5, 0.278; ("1, 8, 0.272; A,  24, 0.265; O, 72, 0.258; I ,  
216, 0.250; A, 1200, 0.238 
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Figure 8 Log ~-retardation time v e r s u s  log elapsed time, yielding 
A= 1.66 x 104s z -" and/~=0.77 in equation (17) 

Curves derived from this equation are compared with 
experimental data in Fioure 9. The agreement is just as 
satisfactory as that in Fioure 5. 

Use of a Cole-Cole function 
An analysis similar to that in the previous section can be 

developed on the basis of the Cole-Cole function. 
Applying equations of the form of equations (6) and (7) to 
the ~-relaxation, and noting that cos(nn/2) has a value 
close to unity for 0.2 ~<n ~<0.3, we obtain for small (t/X~c)" 
the approximation 

D=(t) f t ~"~ nn ( t  )"][ / t \" nn-] 
- -  ~ - -  cos- -  1-2(~-~-z~ ) cos~--/ 
A >o t . , - < ) L  . o .  . 

ft_'  cosn.fl_f2 
2 L \ 

] 
cos(mz/2),/\~Zc / + ' "  ".J 

(19) 

where % and n now refer to the ~-process. When 
(t /xQ"~ 1 it follows that 

log D,(t) = log AD, + nlog t - nlog Xrc + log cos(nn/2) 

(20) 

so that the plot of log D,(t) against log t is again predicted 
to be linear, as observed in Figure 6, with slope n=m. 
Deviations of 2 ~ from linearity in these plots now occur 
at a critical time tc given by 

I nn 1 ] ( t ~  Y=0.98 (21) 
1 -  2cos~  cos(nrU2)_lkXZe/ 

Derivation of the parameters for modelling the influence 
of physical ageing on short-term creep in polypropylene 
therefore follows the same procedures as described in the 
section above on the Williams-Watts function but 
employing equations (6), (20) and (21) in place of 
equations (10), (12) and (13), respectively. For Case 1 in 
Figure 6, where n=m=0.255  and z c are considered 
constant, x% was found to be 1.5 x 109 s and the variation 
in AD= with elapsed time could be described using 
equation (14) with P = 3 4 . 7 x  10-1° Pa -1, 
Q = 7 1 5 x  10-1°pa -~s" and r=0.209. With these 

parameters, equations of the form of equations (6) and (7) 
yield curves virtually identical to those from equation (15) 
in Figure 5 for times up to about 107"5 s. Over this time 
range it is assumed that the Cole--Cole and Williams- 
Watts functions with different but corresponding 
parameters will give very similar predictions for Case 2 
above and under other conditions. 

LONG-TERM CREEP BEHAVIOUR 

In the short-term creep experiments discussed above, the 
age of each specimen was essentially constant since the 
creep times were considerably less than te. With longer 
term tests, further ageing during the period under load 
must be considered in the prediction of long-term 
behaviour. The short-term results suggest that further 
ageing during room temperature creep in polypropylene 
will affect the long-term compliance through changes in 
parameters characteristic of both the fl- and a- 
relaxations. For the fl-relaxation, the ageing will give rise 
to a progressive decrease in magnitude ADp but have a 
negligible effect on the mean retardation time and 
distribution parameter. For the a-process, changes may 
occur either in AD= or in the mean retardation time and 
the distribution. Following these observations, we now 
analyse the long-term creep on the basis of a viscoelastic 
model which can account for changes either in the 
relaxation magnitude or in the retardation times. Details 
of the model and calculations are given in the Appendix. 

Case 1: AD~ variable, Zw and m constant 
When ADp and AD~ are each reduced by the ageing, 

and all retardation times are unaffected, the long-term 
creep compliance is given by equation (All),  which may 
be written in the form 

D(t) = Dup + AD~(0)~p(t) + AD=(0)~,(t) + lp + I= (22) 

The first three terms on the right-hand side of this 
equation describe the short-term creep at constant AD~(0) 
and AD~(0), which are the relaxation magnitudes at the 
start of the creep test. The integrals I~ and I~ represent 

i 

5 
i • 

- 4 o ° °  • 
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Figure 9 Comparison of data for the short-term creep contribution 
from the ,,-relaxation at several elapsed times tc with predicted curves 
given by equation (18). A = 1.66 x 104 s z -", /~ = 0.77, 
AD==53x10-Z°Pa -1, mo=0.358 and X=0.027. Symbols are 
explained in Fioure 5 
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T a b l e  I Values for the integrals I= and lp in equation (22) determined 
by numerical integration of equation (A 11) ° 

t (s) 

- 10 l °  Ip ( P a  - 1 )  - 101° I= ( P a  - 1 )  

t e = 8 h  t e=24h  t e=72h  t e = 8 h  t e=24h  t e=72h  

I x 104 0.05 0.02 0 0.13 0 0 
3x 104 0.11 0.04 0.02 0.52 0.16 0.04 
6 x 104 0.17 0.08 0.03 0.94 0,36 0.10 
1 x lO s 0.23 0.11 0.05 1.47 0,60 0.19 
3x 10 s 0.36 0.22 0.11 2.90 1.50 0.64 
6 x 10 s 0.46 0.30 O. 17 4.22 2,34 1.14 
1 x 106 0.52 0.36 0.22 5.25 3,18 1.69 
3 x 106 0.67 0.50 0.35 8.34 5,34 3.22 
6 X 106 0.75 0.59 0.43 10.6 7,03 4.50 
1 X 107 0.82 0.65 0.49 12.2 8.4 5.56 
3 X 107 0.61 8.34 

°Q=444x  10 -1° Pa -1 s', r=0.211, zw=3x l0 ss  

20 

g 
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Figure 10 Comparison of long-term creep behaviour predicted using 
equation (22) ( ) with extrapolated short-term curves ( - - - )  given 
by the first three terms of equation (22). m and Zw are assumed constant. 
The parameters used in the calculation are given in Figures 2, 4 and 5 
and Table I. A, t e=8h ;  B, t e=72h  

negative contributions to D(t) arising from the reductions 
in AD~ and AD= due to further ageing. 

In applying equation (22), we let g~(t)= ~bc~(t) and 
~b~=~,=(t), bearing in mind that ~kca(t) is characterized 
by constant zc and n and that ~w,(t) is associated with 
constant Zw and m. From equations (8) and (14) we then 
substitute the following into equation (22): 

ADt~(0 ) = Bt~ -k 

ADt~(u ) = B(t e + u) -k 

AD~(O) = P + Qt~-" 
(23) 

AD~(u) = P + Q(te + u)-" 

Using values for the parameters given above, the integrals 
Ip and I= have been evaluated numerically. Values are 
given in Table I at discrete times t corresponding to long- 
term creep experiments for the elapsed times considered 
here. The magnitudes of I~ and Ia become significant at 
times t > tff3 and this criterion therefore defines the limit 
of short-term tests for polypropylene according to this 
model. It can be seen that I~ has much larger negative 
values than I~. 

Effects of ageing on creep: B. E. Read et  al. 

Long-term creep curves predicted using equation (22) 
are compared in Figure 10 with extrapolated short term 
curves given by the first three terms in equation (22). This 
plot demonstrates the substantial influence that physical 
ageing has on long-term creep behaviour, the vertical 
difference between curves at the same elapsed time 
representing the term I~ +I~. Figure 11 compares long- 
term predicted curves with experimental data at three 
elapsed times. It is apparent that the influence of ageing is 
to reduce creep rates such that curves at different age 
states converge at long times. Although this feature is 
observed in the experimental data, predictions are 
consistently below measured values, the agreement being 
better at 72 h elapsed time than at 8 h. 

To investigate the scope for obtaining better 
predictions of long-term creep behaviour using this 
model, alternative parameters were considered in the 
analysis of short-term data. The selection of a higher 
value for Zw = 1 x 109 s gave rise to the need for revised 
estimates for AD~ and hence P and Q in equation (14). 
New values for I= were also evaluated. The predicted 
long-term creep curves had slightly higher gradients, 
resulting in a small improvement in the agreements with 
data, although insufficient to justify confidence in the 
model. 

The use of the Cole-Cole function, equation (6), in 
place of the Williams-Watts function to model creep in 
the ~ region was also investigated. The parameters 
employed are given in the section on the Cole-Cole 
function above and new values for I~ again had to be 
computed. Long-term creep predictions were made using 
equation (22) but now the function ~,~(t) took the form of 
the Cole-Cole function, equation (7). These predictions 
were indistinguishable from those made using the 
Williams-Watts function shown in Figure 11 and, 
therefore, again lie significantly below measured values. 

Case 2: Zw and m variable, AD~ constant 
The analysis of short-term data in the ~-region has been 

described above for the case where AD~ is assumed 
constant and both zw and m vary with t e. To allow for 
these effects, together with decreases in AD~, in the 
prediction of long-term creep we now employ equation 
(A13) from the Appendix. The creep function ~k~(t) is 
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Figure 11 Comparison of long-term creep data at three elapsed times 
with curves predicted using equation (22). Parameters are the same as in 
Figure 10. A, t e l 8  h; B, te=24 h; C, te=72 h 

POLYMER, 1988, Vol 29, December 2166 



Effects of  ageing on creep: B. E. Read e t  a l .  

I 
g 

o 
0 

18 

16 

14 

12 

10 

8 

6 

o m • ° °  

l I I I 
10 3 10 4 10 5 10 6 

t (s) 

Figure 12 Comparison of long-term creep data with curves predicted 
using equation (27) in which m and ~w vary with time. Parameters are 
Oven in Figures 2 and 9 and Table 1. A, te = 8 h; B, te = 24 h; C, te = 72 h 

again identified with ~%p(t) and, for the generalized creep 
function ~ba,(t), we write 

Ca=(t) = 1 - exp[ - (2.(t)/Tw(O)) "(°] (24) 

where, following (A4) and (17), 

t t 

zw(O)d t= 
; tw( t )= ;~-~  ' - - - - f ( t ~ - ~ ) d ,  

0 0 

(25) 

and, from (16), m(t) is given by 

m(t) = too(t= + t)-z (26) 

In comparing (24) with the definition of ~a=(t) in (A8) we 
note that the effective time 2(t,T(0)) in (A8) replaces the 
real time t to account for the increasing retardation times 
during long-term creep and that the broadening of the 
distribution arises from a dependence of 2(t,z(0)) on x(0). 
In the empirical function (24) the increasing retardation 
times are allowed for by replacing t with the effective time 
~(t) which relates to the mean retardation time z,. The 
broadening of the distribution is then characterized by the 
time dependence of m. 

Equation (A13) may now be written 

D(t) = Dup + ADp(0)~kc~ (t) + Ip 

+AD={1 F [ te 1-" - u _  1))m°('°+')-']} -expL-kag-)  [(1+t/t=), 
(27) 

Long-term creep curves obtained using equation (27) are 
compared with experimental data in Figure 12. A 
convergence in creep behaviour at longer times is 
predicted by this equation but occurs more slowly than 
observed in the data. Furthermore, calculated long-term 
creep compliances lie significantly above experimental 
values, especially at the shorter elapsed times. To 
investigate the influence of alternative estimates of 
retardation times, values for Zw = 7 x 107 s and 1 x 109 s at 
t==72h were also considered (cf. ~ ,=2 .6x  10as at 

t, = 72 h in Figure 12). New values (assumed constant) for 
AD= were calculated and the dependence of Zw on t= could 
again be described by equation (17) with appropriate new 
values of/~ and A. The predicted long-term creep curves 
became lower and closer to the experimental curves with 
decreasing x,. However, at the shortest x,, studied the 
convergence of predicted curves was still slower than that 
found experimentally. 

It is apparent that predictions of long-term creep based 
on Case 2 (Figure I2) tend to overestimate the 
compliances and yield a late convergence of creep curves, 
whereas predictions based on Case 1 (Figure 11) 
underestimate compliances and give an early convergence 
of curves. Although the Case 2 predictions are closer to 
the experimental data, these observations suggest that a 
more realistic model should describe ageing effects partly 
in terms of an increasing Xw but with an additional 
simultaneous reduction in AD=. With such a general 
model, difficulties are anticipated in separating 
experimentally the contributions from the two sources. 

DISCUSSION 

In discussing the structural origins of the above results we 
first note that the heat treatment at 80°C and storage at 
23°C are unlikely to induce changes in crystallinity for 
material annealed at 130°C. Hence the structural changes 
during ageing at 23°C almost certainly occur in the 
amorphous phase. The nature of these changes, and their 
influence on the creep data, may be considered initially in 
terms of Struik's model s. For this purpose the fl- and ~- 
relaxations will be associated with the respective lower 
and upper transition temperatures ~L and Tf within the 
proposed distribution of T r Here Tg is the normal glass 
transition temperature (T~) of the more mobile, 
unconstrained amorphous material and Tf  the glass 
transition temperature of less mobile amorphous material 
which is close to, and constrained by, the crystals. 
According to Struik's model the structural changes 
during ageing mostly involve molecular rearrangements 
of the kind associated with the glass transitions and can 
yield decreases in mobility of both the less mobile and the 
more mobile amorphous regions. At high ageing 
temperatures some secondary crystallization effects are 
also proposed which have little influence on molecular 
mobility. In discussing the effect of these changes on the 
creep of semicrystalline polymers, Struik distinguished 
between the observed behaviour in four different 
temperature regions (Regions 1-4). 

For polypropylene at 20°C, Struik reported that short- 
term, semi-logarithmic creep curves (4 ~<t ~< 104 s) 
obtained at different elapsed times could be superposed 
by downward vertical shifts together with horizontal 
shifts to longer times. He interpreted this result in terms of 
his 'Region 2' type behaviour, employing a geometrical 
construction (Reference 8, Figure 6(b)) of questionable 
validity. Our data in Figures 1 and 2 suggest, in fact, that 
Dp(t) for the more mobile material is approaching its 
rubbery plateau at creep times above 1 s and that the 
creep data should be considered, therefore, in relation to 
Region 3 (Tg L < T< TgU). According to Struik's model the 
downward shift in creep curves, which corresponds to our 
decrease in AD 0 with t,, might then be ascribed to a 
reduction in the quantity of more mobile material. The 
horizontal shift would be attributed to a decrease in 
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Figure 13 Schematic illustration of a possible ageing mechanism 
associated with the ct-proccss 

mobility of the less mobile regions, equivalent to our 
increase in ~w~ with t~. 

Although such interpretations are broadly consistent 
with our observations, they raise further difficulties. First, 
an upward vertical shift is suggested by Struik for Region 3 
which is opposite to that observed. Secondly, it is difficult 
to understand how the amount of more mobile material 
decreases with elapsed time since it is at equilibrium 
immediately after quenching. The slight broadening of 
the ~t-region (decrease in m) with te indicated by our data, 
and the possible decrease in AD~, further suggest that the 
superposition of creep curves by combinations of vertical 
and horizontal shifts will not be strictly valid, as found by 
Chai and McCrum* 7. 

In considering other possible ageing mechanisms in 
polypropylene, we assume that the slow underlying 
structural changes at room temperature involve 
conformational rearrangements of the type responsible 
for the s-retardation process. However, on the basis of 
much existing evidence, we accept that the 0t-process may 
not be associated with an upper T, but originates from 
segmental motions in the amorphous phase which couple 
with the translation of polymer chains along the c crystal 
axes 6'1s. Figure 13 illustrates how such motions could 
decrease the contour length of a tie-molecule linking 
neighbouring crystals, through the lengthening of loops 
on the crystal surfaces. Since this process should yield a 
decreased number of bonds in high-energy rotational 
states then, at equilibrium with respect to the ~- 
mechanism and in the absence of an external stress, the 
average length of tie-molecules will decrease with 
decreasing temperature. Following a rapid quench from a 
high temperature to some lower temperature T within the 
0t-region, the contour lengths of tie-molecules will 
therefore decrease (at a rate controlled by the or- 
retardation time at T) as the polymer seeks a new 
equilibrium structure. Owing to the constraints produced 
by the crystals, the tie-molecules will thus slowly assume 
more extended conformations relative to those existing in 
equilibrium at higher temperatures. For such a process to 
be feasible, it must of course produce a decrease in free 
energy. Thus the conformational entropy decrease arising 
from the tie-molecule extensions, which would yield a 
positive contribution to the free energy change, must be 
outweighed by other contributions such as a decrease in 
internal energy and increase in entropy of the folds. An 
increased resistance to deformation (at intermediate 
timescales of loading) resulting from the increased tie- 
molecule extensions might then account for the decrease 
in Dl~ with elapsed time. The high calculated values of 
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amorphous-phase rubbery moduli for semi-crystalline 
polymers are in fact consistent with the suggestion of 
extended molecules in the amorphous layers 6'19. 

The observed increase in ~t-retardation time with t, 
further requires that the activation energy for creep 
increases with the structural changes during ageing. 
Assuming that the barriers hindering the motions of 
amorphous segments contribute to the activation energy, 
this could result from the increased population of bonds 
in low-energy states. Regarding these tentative 
suggestions, it should be added that a small increase in 
crystal lamellar thickness due to secondary crystallization 
(although considered unlikely) might also yield 
significant increases in tie-molecule extension 19 and in 
activation energy for the at-process 6. We finally note that 
physical ageing in glassy amorphous polymers also 
involves decreases both in conformational entropy and 
enthalpy in the approach to a more ordered equilibrium 
structure 2°. Further work is being undertaken to assess 
the validity of the various models. 

CONCLUSIONS 

Accurate creep data for polypropylene may be obtained 
over 14 decades of time t using a combination of static and 
dynamic techniques. Results obtained at 23°C cover the 
glass-rubber fl-relaxation region (10- a-102 s) and the 
onset of the overlapping 0t-process at times > 10- 2 s. The 
data exhibit a marked dependence on the physical age of 
the polymer as determined by the elapsed time te at 23°C 
between quenching from 80°C and the start of the creep. 

Curves of creep compliance D(t) against log t in the fl- 
region are quite well fitted by a symmetrical Cole~Cole 
function, enabling reliable estimates to be obtained (by 
extrapolation) of the compliance contributions from the 
fl- and 0t-processes in the overlap region. Results of this 
analysis show that the magnitude ADp, or relaxed 
compliance D~, of the fl-process decreases with to and 
that the mean retardation time and distribution of 
retardation times for the fl process are essentially 
unaffected by ageing. 

In the case of short-term experiments (t~<0.1 to), the 
creep compliance contribution from the s-process at the 
times so far studied (up to 10 6 s) may be described by 
functions of the Williams--Watts or the Cole-Cole form. 
Within experimental error, the influence of ageing on 
short-term creep can be accounted for by either (Case 1) a 
decrease in magnitude AD~ with elapsed time and no 
change in retardation times or (Case 2) an increase in 
average retardation time with t~ together with some 
broadening of the distribution at constant AD~. 

Predictions of long-term creep behaviour are possible 
with the aid of a phenomenological model which can 
account for changes either in relaxation magnitude or 
retardation times due to ageing processes accompanying 
the creep. Discrepancies are observed between 
experimental long-term creep curves and predicted curves 
based either on Case 1 or Case 2. Although the Case 2 
predictions show a closer agreement with experiment, 
these observations suggest that ageing gives rise both to 
increases in 0t-retardation times and to some decrease in 
AD~. 

The results of this investigation do not fully support 
Struik's model of ageing in partially crystalline polymers, 
which is based on the concept of a distribution of glass 
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temperatures for the amorphous phase. It is suggested 
that ageing in polypropylene at room temperature is 
controlled by the =-process. This involves cooperative 
rearrangements in the crystalline and amorphous regions 
and might yield gradual decreases in contour length, and 
thus more extended conformations, of amorphous tie- 
molecules after quenching from high temperatures. 

APPENDIX: PHENOMENOLOGICAL MODEL 
FOR LONG-TERM CREEP 

We first consider, for a given relaxation process, the ith 
element of a generalized Voigt model (Fioure I4a) 
subjected to a constant stress a~ for times t I> 0. If ei(u) is the 
strain in the element at time u between 0 and t the 
compliance contribution Di(u)= ei(u)/a~ is given by s 

dDi(u) Di(u) ADi(u) 
- -  - (A1) 

du zi(u) zi(u) 

Here zi(u) is the retardation time of the element and 
ADi(u ) its contribution to the total compliance increment 
AD(u) associated with the given relaxation region. Note 
that both z~(u) and ADi(u) may vary with time u owing to 
further ageing during the creep experiment. We now 
multiply each side of (A1) by the integrating factor 
exp[~d~/zi(~) ] where ~ is a time variable. Integrating 
from u = 0 to t with Di(0)= 0 we then obtain 

t t u 

[-f de ] ('AD,(u) r f  de ] ,  Di(t)exp - -  = - - e x p  - -  ou (A2) 

0 0 0 

which yields, after some manipulation, 

t 

Di(t)= f ~ e x p F  )~i(t)--~'i(U)']~ 
0 

(A3) 

Here 2i(t ) and 21(u) are 'effective times' given by 

t 

~i(0) 

0 
(A4) 

u 

Ti(0) f 
0 

and zi(0) is the retardation time at the start of the creep 
test. Since d2i(u)/du=Ti(O)/~i(u) it follows from (A3) that 

' d D,(t)=fAD,(U~dueXp I 2i(t)-- 21(u) ] .  ju. 
0 

(A5) 

The total compliance D(t) is now obtained by summing 
the contributions from all elements. In the limit of a 
continuous distribution we obtain 

t 

0 

(A6) 

O c 

ADi 

8 

I I r )  
~ u t ~  I I v 

! ! 

I ~ - p r o c e s s  I I I ~ - p r o c e s s  
i I 

b 
Fignre 14 Generalized Voigt models for (a) a given relaxation process 
and (b) two overlapping processes ~ and ~ with an instantaneous 
component 

where 

oo 

0 

2(t'z (O))~o~(U'z(O)!]tdz (0) 

(A7) 

and ~b(z(0)) is the normalized distribution of retardation 
times at the start of the creep. Note that the dependence of 
the effective times 2(t,T(0)) and 2(u,z(0)) on z(0) allows for 
changes in the breadth of the retardation time 
distribution with further ageing during creep. 
Furthermore for u=0,  2(u,z(0)) vanishes and (A7) 
becomes 

c~ 

Ip~.(t)=f ~b(r(0)){l-exp[ 2(~0))-]}dz(0) (A8) 

0 

Integration of (A6) by parts then yields 

t 

D(t)= AD(0)~hx(t)+ f ~h a(t,U~duAD(u ) du 
0 

(A9) 

where AD(0) is the value of AD(u) at the instant of loading. 
The creep behaviour arising from overlapping ~t- and p- 

mechanisms may now be analysed by an extension of the 
above model. For this purpose we consider a generalized 
Voigt model (Fioure 14b) containing distributions of 
elements representative of each process in series with a 
spring to account for the instantaneous compliance DuB 
assumed to be unaffected by ageing. It follows that 

t 

0 

d 
+ AD=(0)~h~(t) + f ~h~=(t,U~duAD=(u ) du 

0 

(A10) 

where subscripts = and fl are used to denote the 
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magnitudes  and creep functions ~ o f  the respective 
processes. 

Equat ion (A10) accounts  for the effects on long-term 
creep of  changes produced  by ageing bo th  in the 
relaxation magni tudes  and in the relaxation times and 
distribution of  relaxation times (which influence the g,~). 
Considerable simplification arises if changes occur  either 
in the magni tude  o r  in the relaxation times for a given 
process. If, for example, the ageing yield decreases in the 
magni tudes  AD~ and AD= and if the relaxation times for 
bo th  the ~- and fl-relaxations are unaffected so that  
2(t,T(0)) = t and 2(u,z(0))= u for each process, then (A10) 
becomes 

t 

D(t)= Dup + AD~(0)~(t)  + f Op(t-U~duAD~(u) du 

0 

(All) 

~ d f '  

+ AD,(O)~h~(t) + t O,(t - U~duAD,(u) du 
a /  
0 

The creep functions 

~h~(t) = f ~bt(z)[1 - exp( - t/r)] dr 

0 

and (A 12) 

~,(t) = f ~ , ( r ) [  1 - exp( - t/r)] dr 

0 

may be identified with empirical functions such as ~hc(t) 
and ~,(t)  above,  yielding relationships 21 between the (~(z) 
and parameters  rc and n or  r ,  and m. 

If  the ageing produces a decrease in AD~ and changes in 
ct-rdaxation times and distribution of  relaxation times for 
the at-process, and both  the fl-relaxation times and AD~ 
are unaffected, then (A 10) reduces to 

t 

D(t)= Ou~ + ADc~(0)tpp(t)+ f ~J ~(t-U~duAD,(u ) du 

0 

+AD=O~(t) (A13) 
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